Oxidative Metabolism of Rye (Secale cereale L.) after Short Term Exposure to Aluminum: Uncovering the Glutathione–Ascorbate Redox Network
نویسندگان
چکیده
One of the major limitations to plant growth and yield in acidic soils is the prevalence of soluble aluminum ions (Al(3+)) in the soil solution, which can irreversible damage the root apex cells. Nonetheless, many Al-tolerant species overcome Al toxicity and are well-adapted to acidic soils, being able to complete their life cycle under such stressful conditions. At this point, the complex physiological and biochemical processes inherent to Al tolerance remain unclear, especially in what concerns the behavior of antioxidant enzymes and stress indicators at early plant development. Since rye (Secale cereale L.), is considered the most Al-tolerant cereal, in this study we resort to seedlings of two genotypes with different Al sensitivities in order to evaluate their oxidative metabolism after short term Al exposure. Al-induced toxicity and antioxidant responses were dependent on rye genotype, organ and exposure period. Al affected biomass production and membrane integrity in roots and leaves of the sensitive (RioDeva) genotype. Catalase was the primary enzyme involved in H2O2 detoxification in the tolerant (Beira) genotype, while in RioDeva this task was mainly performed by GPX and POX. Evaluation of the enzymatic and non-enzymatic components of the ascorbate-glutathione cycle, as well the oxalate content, revealed that Beira genotype coped with Al stress by converting DHA into oxalate and tartarate, which posteriorly may bind to Al forming non-toxic chelates. In contrast, RioDeva genotype used a much more ineffective strategy which passed through ascorbate regeneration. So, remarkable differences between MDHAR and DHAR activities appear to be the key for a higher Al tolerance.
منابع مشابه
Expressed sequence tag-based gene expression analysis under aluminum stress in rye.
To understand the mechanisms responsible for aluminum (Al) toxicity and tolerance in plants, an expressed sequence tag (EST) approach was used to analyze changes in gene expression in roots of rye (Secale cereale L. cv Blanco) under Al stress. Two cDNA libraries were constructed (Al stressed and unstressed), and a total of 1,194 and 774 ESTs were generated, respectively. The putative proteins e...
متن کاملPattern of aluminum-induced secretion of organic acids differs between rye and wheat.
Al-Induced secretion of organic acids from the roots has been considered as a mechanism of Al tolerance, but the processes leading to the secretion of organic acids are still unknown. In this study, the secretion pattern and alteration in the metabolism of organic acids under Al stress were examined in rye (Secale cereale L. cv King) and wheat (Triticum aestivum L. cv Atlas 66). Al induced rapi...
متن کاملAn ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L).
Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of whea...
متن کاملMalate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves.
In cold-hardened leaves (CHL) of winter rye (Secale cereale L.) much higher levels of malate were detected by (13)C-NMR than in non-hardened leaves (NHL). As this was not observed previously, malate metabolism of CHL was studied in more detail by biochemical assays. The activities of several enzymes of malate metabolism, NADP-malate dehydrogenase, NAD-malate dehydrogenase, phosphoenolpyruvate c...
متن کاملSYSTEMATIC STUDY OF SECALE CEREALE IN IRAN
Secale cereale (rye) with its vitally importance can have a marked place in the world cereal production, particularly in North Europe. This study concerns morphology, taxonomy and cytotaxonomy of this species in Iran. Based on the evaluation of 12 qualitative and quantitative morphological characters and using phenetic analysis, it was revealed that, S. cereale occurs in Iran with two subspecie...
متن کامل